3 research outputs found

    COUPLING REDUCTION USING ELECTROMAGNETIC BAND GAP STRUCTURES IN ENCLOSURES AND CAVITIES

    Get PDF
    Electromagnetic Interference (EMI) in electronic devices is one of the major challenges in the design of high-speed electronic packages. These challenges are intensified by the increase in the level of system integration and the ever-increasing operating frequency of microprocessors. EMI takes place at different levels including the package, board, component and chip. The physical mechanism behind electromagnetic interference is the coupling of energy between different EM sources. This coupling can be either conducted or radiated. However, regardless of the coupling mechanism, surface currents are needed to support the field that eventually radiates, which constitute the electromagnetic interference in the first place. Minimizing these surface currents is considered a fundamental and critical step in minimizing EMI. In this work, novel strategies are proposed to confine surface currents in enclosures and cavities. Unlike the traditional use of lossy materials and absorbers, which suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, we consider the use of electromagnetic Band Gap (EBG) structures which are inherently suited for surface current suppression. The effectiveness of the EBG as an EMI suppresser in enclosures, chasses and cavities will be demonstrated using numerical simulations

    Electromagnetic Interference Reduction using Electromagnetic Bandgap Structures in Packages, Enclosures, Cavities, and Antennas

    Get PDF
    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (r > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower dielectric constant. Meander lines can increase the effective inductive load which pushes down the lower edge of bandgap, thus resulting in a wider bandgap. Simulation results are included to show that the proposed EBG structures provide very wide bandgap (~10GHz) covering the multiple harmonics of of currently available microprocessors and its harmonics. To speed up the design procedure, a model based on combination of lumped elements and transmission lines is proposed. The derived model predicts accurately the starting edge of bandgap. This result is verified with full-wave analysis. Finally, another novel compact wide band mushroom-type EBG structure using magneto-dielectric materials is designed. Numerical simulations show that the proposed EBG structure provides in-phase reflection bandgap which is several times greater than the one obtained from a conventional EBG operating at the same frequency while its cell size is smaller. This type of EBG structure can be used efficiently as a ground plane for low-profile wideband antennas

    On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    No full text
    Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity
    corecore